Machine learning: SVM, ANN, ensembles,
 active learning, practical issues

Agenda

- SVM
- Neural networks
- Ensemble methods
- Active learning
- Practical issues

Agenda

- Logistic regression \rightarrow SVM
- Neural networks
- Ensemble methods
- Active learning
- Practical issues

Logistic Regression (not yet)

- We could use a linear function to classify examples

Logistic Regression (not yet)

- We could use a linear function to classify examples
(we would need: a linear function; and a step function for threshold)

Logistic Regression (not yet)

- We could use a linear function to classify examples
(we would need: a linear function; and a step function for threshold)

- But this has issues
- Sensitive to non-important examples in extremes
- We could optimize both functions together to alleviate this, BUT
- Step function is not differentiable, so usual optimization approaches cannot be used
- Values close to the cut-off and far from it have the same value

Logistic Regression (not yet)

- We could use a linear function to classify examples
(we would need: a linear function; and a step function for threshold)

- But this has issues
- Sensitive to non-important examples in extremes
- We could optimize both functions together to alleviate this, BUT
- Step function is not differentiable, so usual optimization approaches cannot be used
- Values close to the cut-off and far from it have the same value
- There are better functions for such purposes

Logistic Regression

- Probabilistic linear classifier
- Logistic (sigmoid) function $f(x)=\frac{1}{1+e^{-x}}$
- Where: $x=w_{0}+\sum_{i} w_{i} x_{i}$
- $f(x)=P(C=1 \mid X)$
- $w_{0}+\sum_{i} w_{i} x_{i}=0$ defines a (linear) decision boundary
- a hyperplane where $P(C=1 \mid X)=0.5$ and $P(C=0 \mid X)=0.5$
in case of two variables:

and $w_{0}+\sum_{i} w_{i} x_{i}$ is proportional to the distance from the hyperplane

Logistic Regression

- Learning
- no closed form solution - optimization, e.g., with gradient descent
- definition of a cost function (several options);
- $\operatorname{cost}\left(y^{\prime}, y\right)=\sum_{i}-y_{i} \log \left(y_{i}^{\prime}\right)-\left(1-y_{i}\right) \log \left(1-y_{i}^{\prime}\right) ; y_{i}^{\prime}, y_{i}$ in $\{0,1\}$
- updating of weights (according to optimization results)

$$
\mathrm{w}_{\mathrm{j}}=\mathrm{w}_{\mathrm{j}}-\alpha \sum_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}^{\prime}-\mathrm{y}_{\mathrm{i}}\right) \mathrm{x}_{\mathrm{ij}}
$$

for all instances, multiple times

- Fast, usually performs well, common choice

Logistic Regression...

- Also non-linear decision boundaries
can be modelled

- We expand the attribute space with synthetic higher-order attributes:

$$
\begin{aligned}
& y^{\prime}=\mathrm{w}_{0}+\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\mathrm{w}_{3} \mathrm{x}_{1}{ }^{2}+\mathrm{w}_{4} \mathrm{x}_{2}^{2}+\mathrm{w}_{5} \mathrm{x}_{1} \mathrm{x}_{2} \\
& -1
\end{aligned} 0 \begin{array}{lllll}
\\
-1 & 0 & 1 & 1 & 0
\end{array} \text { gives } \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}=1
$$

Logistic Regression...

- Also non-linear decision boundaries
can be modelled

- We expand the attribute space with synthetic higher-order attributes:

$$
\begin{aligned}
& y^{\prime}=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}+w_{5} x_{1} x_{2} \\
& \begin{array}{lll}
-1 & 0 & 0
\end{array} \\
& 1 \\
& 1 \\
& 0 \\
& \text { gives } x_{1}{ }^{2}+x_{2}{ }^{2}=1
\end{aligned}
$$

- But this also causes problems
- Computational complexity (many more parameters to learn, additional computing)
- Overfitting

Logistic Regression...

- Also non-linear decision boundaries
can be modelled

- We expand the attribute space with synthetic higher-order attributes:

$$
\begin{aligned}
& y^{\prime}=w_{0}+w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{1}^{2}+w_{4} x_{2}^{2}+w_{5} x_{1} x_{2} \\
& \begin{array}{lll}
-1 & 0 & 0
\end{array} \\
& 1 \\
& 1 \\
& 0 \\
& \text { gives } x_{1}{ }^{2}+x_{2}{ }^{2}=1
\end{aligned}
$$

- But this also causes problems
- Computational complexity (many more parameters to learn, additional computing)
- Overfitting
- SVM tackles these (max. margin and support vectors, kernel trick)

SVM-max. margin

- Linear binary classifier (not probabilistic)
- Model (linear, hyperplane) for separation of data by using the maximal margin principle
 (max margin: robustness) based on support vectors (SV: stability)
- Learning: maximal margin (optimal hyperplane) optimization problem
- Soft margin to allow misclassifications
- Distance on the wrong side: ξ_{i}
- Parameter C (misclassification cost) - set with experimentation!
- Penalty: $\mathrm{C} \cdot \xi_{i}^{r}$

SVM - kernel trick

- Use of higher dimensions for linearly non-separable data
- https://www.youtube.com/watch?v=3liCbRZPrZA
- https://www.youtube.com/watch?v=9NrALgHFwTo
- Learning (optimization) involves dot products in the term to maximize:

$$
L_{D}=\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \overline{X_{i}} \cdot \overline{X_{j}}
$$

Dot product of training data points is needed, (not feature values)
\sim similarity
We can avoid representing W
classification too:

$$
F(\bar{Z})=\operatorname{sign}\{\bar{W} \cdot \bar{Z}+b\}=\operatorname{sign}\left\{\left(\sum_{i=1}^{n} \lambda_{i} y_{i} \overline{X_{i}} \cdot \bar{Z}\right)+b\right\}
$$

SVM - kernel trick, here it is

- We do not need the feature values, just dot products
- Transformation to another (higher dimensional) feature space would mean:
$\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
calculation of transformations, then the lengthy dot products...
- Instead, we can use a function such that: $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
- And $K\left(x_{i}, x_{j}\right)$ is in original space!

SVM - kernel trick, here it is

- We do not need the feature values, just dot products
- Transformation to another (higher dimensional) feature space would mean:
$\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
calculation of transformations, then the lengthy dot products...
- Instead, we can use a function such that: $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
- And $K\left(x_{i}, x_{\mathrm{j}}\right)$ is in original space!
- EXAMPLE

$$
\Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

$$
K(x, z)=(x \cdot z)^{2}
$$

$$
\begin{aligned}
& \Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& x=\left(x_{1}, x_{2}\right) \\
& z=\left(z_{1}, z_{2}\right) \\
& \Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& \Phi(t)=\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& \Phi(x) \cdot \Phi(z)=x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(\boldsymbol{x})=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& K(x, z)=(x \cdot z)^{2} \\
& x=\left(x_{1}, x_{2}\right) \\
& z=\left(z_{1}, z_{2}\right) \downarrow \\
& \Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& \Phi(t)=\left(z_{1}^{2}, \sqrt{2} z_{1} z_{L}, z_{2}^{2}\right) \\
& \Phi(x) \cdot \Phi(z)=x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
& x=\left(x_{1}, x_{2}\right) \\
& z=\left(z_{1}, z_{2}\right) \\
& K(x, z)=(x \cdot z)^{2}=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}= \\
& =x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& x=\left(x_{1}, x_{2}\right) \\
& \begin{array}{l}
x=\left(x_{1}, x_{2}\right) \\
z=\left(z_{1}, z_{2}\right)
\end{array} \downarrow \\
& \Phi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
& \Phi(t)=\left(z_{1}^{2}, \sqrt{2} z_{1} z_{L}, z_{2}^{2}\right) \\
& \Phi(x) \cdot \Phi(z)=x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
& x=(1,2) \\
& z=(4,5) \\
& \Phi(x)=(1 \cdot 1, \sqrt{2} \cdot 1 \cdot 2,2 \cdot 2)=(1, \sqrt{2} \cdot 2,4) \\
& \Phi(z)=(4 \cdot 4, \sqrt{2} \cdot 4 \cdot 5,5 \cdot 5)=(16, \sqrt{2} \cdot 20,25) \\
& \Phi(x) \cdot \Phi(z)=1 \cdot 16+\sqrt{2} \cdot 2 \cdot \sqrt{2} \cdot 20+4 \cdot 25=196 \\
& K(x, z)=(x \cdot z)^{2} \\
& x=\left(x_{1}, x_{2}\right) \\
& z=\left(z_{1}, z_{2}\right) \\
& K(x, z)=(x \cdot z)^{2}=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}= \\
& =x_{1}^{2} z_{1}^{2}+2 x_{1} z_{1} x_{2} z_{2}+x_{2}^{2} z_{2}^{2} \\
& x=(1,2) \\
& z=(4,5) \\
& K(x, z)=(1 \cdot 4+2 \cdot 5)^{2}=14 \cdot 14=196
\end{aligned}
$$

SVM - kernel trick, here it is

- We do not need the feature values, just dot products
- Transformation to another (higher dimensional) feature space would mean:
$\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
calculation of transformations, then the lengthy dot products...
- Instead, we can use a function such that: $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \Phi\left(\mathrm{x}_{\mathrm{i}}\right)$
- And $K\left(x_{i}, x_{j}\right)$ is in original space!
- EXAMPLE
- We can only calculate kernels (polynomial, Gaussian RBF, ...)
- The mapping Φ can now be only implicitly used
- Simetric, positive semi-definite; similarity ; even for strings, graphs

SVM - practical note

- It is important to normalize the attributes!
- otherwise the ones with large values dominate in influence

Perceptron

- Inspired by (simulation of) the human nervous system

$$
y^{\prime}=\operatorname{sign}\left(\sum_{i} w_{i} x_{i}+b\right)
$$

Learning (iterative process):

- Initialize weights
- For each training item (\mathbf{x}, \mathbf{y})
- compute y'
- update all weights $w_{i}^{\prime}=w_{i}+\alpha\left(y_{i}-y_{i}^{\prime}\right) x_{i}$
- Until convergence
- Can learn (converge) in linearly separable situations
- Finds (some!) linear separation

Neural networks with hidden layers

- Very powerful in capturing arbitrary functions
- having non-linear activation functions; careful selection to facilitate learning
- Automatic generation of (higher-level) features!
- last level is similar to logreg on generated (relevant) high-level features, not all quadratic, cubic, ... which easily go into hundreds of thousands.
- Drawbacks
- computationally demanding learning (recently alleviated)
- more layers - more power - more prone to overfitting
- black-box models

Neural network - use (forward propagation)

Use of a neural network

$$
\begin{aligned}
& h_{1}{ }^{(2)}=g\left(w_{11}{ }^{(1)} x_{1}+w_{21}{ }^{(1)} x_{2}+\ldots+w_{n 1}{ }^{(1)} x_{n}\right) \\
& h_{2}{ }^{(2)}=g\left(w_{12}{ }^{(1)} x_{1}+w_{22}{ }^{(1)} x_{2}+\ldots+w_{n 2}{ }^{(1)} x_{n}\right)
\end{aligned}
$$

$$
h_{m}{ }^{(2)}=g\left(w_{1 m}{ }^{(1)} x_{1}+w_{2 m}{ }^{(1)} x_{2}+\ldots+w_{n m}{ }^{(1)} x_{n} x_{n}\right.
$$

$$
\mathrm{y}^{\prime}=\mathrm{g}\left(\mathrm{w}_{11}{ }^{(2)} \mathrm{h}_{1}^{(2)}+\mathrm{w}_{21}{ }^{(2)} \mathrm{h}_{2}^{(2)}+\ldots+\mathrm{w}_{\mathrm{m} 1}{ }^{(2)} \mathrm{h}_{\mathrm{m}}^{(2)}\right)
$$

Neural networks - learning

- Two things to learn:
- Structure: expert knowledge and experimentation
- Parameters/weights : backpropagation (and other optimization approaches)
- Gradient descent (consequence: step \rightarrow sigmoid; error $\left.0 / 1 \rightarrow\left(y-y^{\prime}\right)^{2}\right)$
- Optimum can be local !
- Weights must be initialized to random values
- Can be done in a batch or online mode
- One epoch : one learning iteration over training data
- Overfitting problem - stop on check with holdout, ...
- Computationally demanding
- EXAMPLE

I) weights for the output layer

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j k}} & =\frac{\partial}{\partial w_{j k}} \frac{1}{2} \sum_{k \in k}\left(y_{k}^{\prime}-y_{k}\right)^{2}=\rightarrow\left(y_{k}^{\prime}-y_{k}\right)^{2}+\left(y_{k}-y^{\prime}+\ldots \quad \begin{array}{l}
\sigma(z)=\sigma(t) \\
\\
\end{array}=\frac{\partial}{\partial w_{j k}} \frac{1}{2}\left(y_{k}^{\prime}-y_{k}\right)^{2}=\right. \\
& =\left(y_{k}^{\prime}-y_{k}\right) \frac{\partial}{\partial w_{j k}} y_{k}^{\prime}=\left(y_{k}\right. \\
& =\left(y_{k}^{\prime}-y_{k}\right) \sigma\left(y_{k}\right)\left(1-\sigma\left(x_{k}\right)\right) \frac{\partial x_{k}}{\partial w_{j k}}= \\
& y_{k}^{\prime}\left(1-y_{k}^{\prime}\right) \cdot h_{j}
\end{aligned}
$$

II) weights for hidden layers

$$
\begin{aligned}
\frac{\partial E}{\partial w_{i j}} & =\frac{\partial}{\partial w_{i j}} \frac{1}{2} \sum_{k \in k}\left(y_{k}^{\prime}-y_{k}\right)^{2}=\sum_{k \in k}\left(y_{k}^{\prime}-y_{k}\right) \frac{\partial}{\partial w_{i j}} y_{k}^{\prime}= \\
& =\sum_{k \in L}\left(y_{k}^{\prime}-y_{k}\right) \sigma\left(x_{k}\right)\left(1-\sigma_{\left(x_{k}\right)}\right) \cdot \frac{\partial x_{k}}{\partial w_{i j}}=1 \\
& =\sum_{k \in k}\left(y_{k}^{\prime}-y_{k}\right) y_{k}^{\prime}\left(1-y_{k}^{\prime}\right) \cdot \frac{\partial x_{k}}{\partial h_{j}} \cdot \frac{\Delta w_{j}}{\partial w_{i j}}=\sigma\left(w_{k}+\cdots+w_{j k} h_{j j}+\cdots\right. \\
= & \left.\sum_{k \in k}\left(y_{k}^{\prime}-y_{k}\right) y_{k}^{\prime}\left(1-y_{k}^{\prime}\right) \cdot w_{j k} \cdot \omega_{\left(x_{j}\right)}\right) \cdot\left(1-\sigma_{\left(x_{j} j\right)}\right) \cdot \frac{\partial x_{j}}{\partial w_{i j}}= \\
= & \sum_{k \in L}\left(y_{k}^{\prime}-y_{k}\right) y_{k}^{\prime}\left(1-y_{k}^{\prime}\right) w_{j k} h_{j j}\left(1-h_{j j}\right) x_{i}^{(1)}
\end{aligned}
$$

Neural networks - learning of the structure

- Fully connected
- Number of layers, number of nodes in layers
- Experiment \& select
- Not fully connected
- Optimal brain damage
- Create a fully connected ANN
- Remove a connection (or a node)
- Retrain \& test
- If not worse, keep and repeat
- Constructive approaches: sequential adding of units (e.g., to tackle misclassified examples)
- !Very large networks can memorize all the training data
- Specific structures: recurrent (internal state, dynamics, memory), convolutional, ...

Neural networks - multiple classes

