
Machine learning:
SVM, ANN, ensembles,

active learning, practical issues
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● We could use a linear function to classify examples

(we would need: a linear function; and a step function for threshold)

● But this has issues
○ Sensitive to non-important examples in extremes
○ We could optimize both functions together to alleviate this, BUT

■ Step function is not differentiable, so usual optimization approaches cannot be used
■ Values close to the cut-off and far from it have the same value

● There are better functions for such purposes



Logistic Regression

● Probabilistic linear classifier

● Logistic (sigmoid) function

○ Where: x = w0 + ∑iwixi
○ f(x) = P(C=1|X)

● w0 + ∑iwixi = 0 defines a (linear) decision boundary
○ a hyperplane where P(C=1|X) = 0.5 and P(C=0|X) = 0.5

and w0 + ∑iwixi is proportional to the distance from the hyperplane

in case of two 
variables:



Logistic Regression

● Learning
○ no closed form solution - optimization, e.g., with gradient descent
○ definition of a cost function (several options);

■ cost(y’, y) = ∑i-yi log (yi’) - (1-yi) log (1-yi’) ;    yi’, yi in {0,1}

○ updating of weights (according to optimization results)
 wj = wj - 𝛼 ∑i (y’i - yi)xij

for all instances, multiple times

● Fast, usually performs well, common choice
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● Also non-linear decision boundaries 
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○ But this also causes problems
■ Computational complexity (many more parameters to learn, additional 

computing)
■ Overfitting

● SVM tackles these (max. margin and support vectors, kernel trick)



SVM - max. margin

● Linear binary classifier (not probabilistic)

● Model (linear, hyperplane) for

separation of data by using the

maximal margin principle

(max margin: robustness)

based on support vectors (SV: stability)

● Learning: maximal margin (optimal hyperplane) optimization problem

● Soft margin to allow misclassifications

○ Distance on the wrong side: 𝜉i
○ Parameter C (misclassification cost) - set with experimentation!
○ Penalty: C⋅𝜉r

i



SVM - kernel trick

● Use of higher dimensions for linearly non-separable data

○ https://www.youtube.com/watch?v=3liCbRZPrZA
○ https://www.youtube.com/watch?v=9NrALgHFwTo

● Learning (optimization) involves dot products in the term to maximize:

classification too:

Dot product of training 
data points is needed, 
(not feature values)

~similarity

We can avoid 
representing W

https://www.youtube.com/watch?v=3liCbRZPrZA
https://www.youtube.com/watch?v=9NrALgHFwTo
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■ EXAMPLE

○ We can only calculate kernels (polynomial, Gaussian RBF, ...)
○ The mapping 𝛷 can now be only implicitly used
○ Simetric, positive semi-definite; similarity ; even for strings, graphs



SVM - practical note

● It is important to normalize the attributes!

○ otherwise the ones with large values dominate in influence



Perceptron

● Inspired by (simulation of) the human nervous system

● Can learn (converge) in linearly separable situations

● Finds (some!) linear separation 
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Learning (iterative process):
● Initialize weights
● For each training item (x,y)

○ compute y’
○ update all weights

wi’ = wi + α(yi-y’i)xi 
● Until convergence

 

y’

’



Neural networks with hidden layers

● Very powerful in capturing arbitrary functions

○ having non-linear activation functions; careful selection to facilitate learning

● Automatic generation of (higher-level) features!

○ last level is similar to logreg  on generated (relevant) high-level features, not all 
quadratic, cubic, … which easily go into hundreds of thousands.

● Drawbacks

○ computationally demanding learning (recently alleviated)

○ more layers - more power - more prone to overfitting

○ black-box models



Neural network - use (forward propagation) 

Use of a neural network
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Neural networks - learning

● Two things to learn:

○ Structure: expert knowledge and experimentation

○ Parameters/weights : backpropagation (and other optimization approaches)

■ Gradient descent (consequence: step → sigmoid; error 0/1 → (y-y’)2)

● Optimum can be local !

● Weights must be initialized to random values

■ Can be done in a batch or online mode

● One epoch : one learning iteration over training data

■ Overfitting problem - stop on check with holdout, …

■ Computationally demanding

■ EXAMPLE







Neural networks - learning of the structure

● Fully connected

○ Number of layers, number of nodes in layers

○ Experiment & select

● Not fully connected

○ Optimal brain damage

■ Create a fully connected ANN

■ Remove a connection (or a node)

■ Retrain & test

■ If not worse, keep and repeat

○ Constructive approaches: sequential adding of units (e.g., to tackle 

misclassified examples)

● ! Very large networks can memorize all the training data

● Specific structures: recurrent (internal state, dynamics, memory), convolutional, ... 



Neural networks - multiple classes


