Machine learning:
SVM, ANN, ensembles,
active learning, practical issues
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e But this has issues

o Sensitive to non-important examples in extremes

o We could optimize both functions together to alleviate this, BUT
m Step function is not differentiable, so usual optimization approaches cannot be used
m Values close to the cut-off and far from it have the same value
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e We could use a linear function to classify examples

(we would need: a linear function; and a step function for threshold)

4 L 'Y 4/ A

e But this has issues

o Sensitive to non-important examples in extremes
o We could optimize both functions together to alleviate this, BUT
m Step function is not differentiable, so usual optimization approaches cannot be used
m Values close to the cut-off and far from it have the same value
e There are better functions for such purposes
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Logistic Regression y ' _

e Probabilistic linear classifier
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e Logistic (sigmoid) function  f(z) =

o  Where: x =w, + 3 WX
o f(x)=P(C=1]|X)

e w,+ywx =0 defines a (linear) decision boundary
o ahyperplane where P(C=1|X) = 0.5 and P(C=0|X) = 0.5

in case of two ®
variables:

and w, +  wx.is proportional to the distance from the hyperplane



Logistic Regression

e Learning
o no closed form solution - optimization, e.g., with gradient descent
o definition of a cost function (several options);

m Cost(y, y)=Zi-yi log (y.)-(1-y) log (1-y.); vy in{0,1}

o updating of weights (according to optimization results)

Wj = Wj Y Zi (y’i B yi)Xij

for all instances, multiple times

e Fast, usually performs well, common choice




Logistic Regression...
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o But this also causes problems
Computational complexity (many more parameters to learn, additional

computing)
m Overfitting

e SVM tackles these (max. margin and support vectors, kernel trick)




SVM - max. margin ° 00
O
Linear binary classifier (not probabilistic) © ] ]
Model (linear, hyperplane) for . u -

separation of data by using the

maximal margin principle

(max margin: robustness)

based on support vectors (SV: stability)

Learning: maximal margin (optimal hyperplane) optimization problem
Soft margin to allow misclassifications

o Distance on the wrong side: &
o Parameter C (misclassification cost) - set with experimentation!

o Penalty: C-£"
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SVM - kernel trick

e Use of higher dimensions for linearly non-separable data

o https://www.youtube.com/watch?v=3liCObRZPrZA
o https://www.youtube.com/watch?v=9NrALgHFwTO

e Learning (optimization) involves dot products in the term to maximize:

n n n
1 v m D -
- = X s TRE TR ot product of training
Lp = Z Ai 9 Z Z Ai )\3 YiYj Xi XJ data points is needed,
1=1 =1 j=1 (not feature values)
~similarity

We can avoid

L ) representing W
classification too:

F(Z) =sign{W - Z + b} =sign{(D> _ A\5; X - Z) + b}

i=1


https://www.youtube.com/watch?v=3liCbRZPrZA
https://www.youtube.com/watch?v=9NrALgHFwTo

SVM - kernel trick, here it is

e We do not need the feature values, just dot products

e Transformation to another (higher dimensional) feature space would

mean.

D(X.) - D(X.)
calculation of transformations, then the lengthy dot products...

e Instead, we can use a function such that: K(x, xj) = ®(x) - D(X)

o And K(x, xj) is in original space!
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SVM - kernel trick, here it is

e We do not need the feature values, just dot products
e Transformation to another (higher dimensional) feature space would
mean:

D(X.) - D(X.)
calculation of transformations, then the lengthy dot products...

e Instead, we can use a function such that: K(x, xj) = ®(x) - D(X)
o And K(x, x;) is in original space!
m EXAMPLE

o  We can only calculate kernels (polynomial, Gaussian RBF, ...)
o The mapping @ can now be only implicitly used
o Simetric, positive semi-definite; similarity ; even for strings, graphs



SVM - practical note

e Itisimportant to normalize the attributes!

o otherwise the ones with large values dominate in influence




Perceptron

e Inspired by (simulation of) the human nervous system

> y = sign(d wiz;+b)
X1 4
w1
Learning (iterative process):
X2 e r: .
e |Initialize weights
: e For each training item (x,y)
y o compute y’
o update all weights
wn W =w. +a(y.-y’)x.
e Until convergence
Xn

e (Can learn (converge) in linearly separable situations

e Finds (somel) linear separation



Neural networks with hidden layers

e Very powerful in capturing arbitrary functions
o having non-linear activation functions; careful selection to facilitate learning
e Automatic generation of (higher-level) features!

o last levelis similar to logreg on generated (relevant) high-level features, not all
quadratic, cubic, ... which easily go into hundreds of thousands.
e Drawbacks

o computationally demanding learning (recently alleviated)
o more layers - more power - more prone to overfitting

o black-box models



Neural network - use (forward propagation)

Use of a neural network
(2) = (1) (1) (1)
h1 g(w11 X W, U+ LW xn)

X
2) = (1) (1) (1)
h2 g(w12 X AW, 0+ Lt W xn)

X5

(2) = (1) (1) (1)
hm g(w1Im X, FW, X+ LW Xn)xn

= QR ) 2R (2 QR ()
y g(w11 h1 W, h2 Tt Wo hm )




Neural networks - learning

e Two things to learn:
o Structure: expert knowledge and experimentation

o Parameters/weights : backpropagation (and other optimization approaches)

m Gradient descent (consequence: step — sigmoid; error 0/1 — (y-y')?)
e Optimum can be local!
e Weights must be initialized to random values

m Can be donein a batch or online mode
e One epoch:one learning iteration over training data

m Overfitting problem - stop on check with holdout, ...

m  Computationally demanding
m EXAMPLE
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Neural networks - learning of the structure

e Fully connected
o Number of layers, number of nodes in layers
o Experiment & select
e Not fully connected
o Optimal brain damage
m Create a fully connected ANN
m Remove a connection (or a node)
m Retrain & test
m If not worse, keep and repeat
o Constructive approaches: sequential adding of units (e.g., to tackle
misclassified examples)
e !Verylarge networks can memorize all the training data

e Specific structures: recurrent (internal state, dynamics, memory), convolutional, ...



Neural networks - multiple classes




